On-Disk Authenticated Data Structures for Verifying Data Integrity on
Outsourced File Storage

Dan Rosenberg
drosenbe@cs.brown.edu

1 Introduction

Several companies now provide cost-effective, indefinitely
scalable file storage in the cloud. However, the problem of
verifying the integrity of data on untrusted storage sites is
largely unanswered. Examining Amazon’s Simple Storage
Service (S3) as a case study [1], we note that there are no
mechanisms incorporated into S3 that would allow a user to
detect changes in stored files, due to data corruption or ma-
licious tampering. Naive solutions, such as retaining a copy
of each file for comparison, or simply maintaining checksums
of each stored file, do not scale well: when dealing with very
large amounts of data, even keeping a checksum for each
file becomes space intensive, especially for users who seek to
outsource their storage needs.

In this paper, we examine prior work in developing scal-
able solutions to the outsourced data integrity problem. Us-
ing insights from these works, we propose a refinement of
previous techniques that would allow a completely client-
side implementation that provides authenticity guarantees
at minimal performance and financial cost. Notably, this so-
lution does not require the use of an external authentication
server.

The paper is structured as follows. In Section 2, we review
the authenticated skip list data structure, explain how it
can be used for data integrity applications, and review more
recent advancements. In Section 3, we present a high-level
overview of our new system. In Section 4, we describe our
implementation in more detail. In Section 5, we provide
initial performance measurements to support the viability of
this system and assess the cost of implementation. Finally,
in Section 6, we present a roadmap for future work.

2 Background

2.1 Skip Lists

The skip list is a data structure that provides an efficient
way of storing a set S of objects in an ordered fashion [2]. It
supports the standard data operations of GET (retrieve an
element), PUT (add or modify an element), and DELETE
(remove an element). The skip list stores its set of elements
in a series of linked lists, where the lowest list Sy contains
every element in the set ordered by key, and each element
is propagated to the next list probabilistically (in our case,
by simulating a coin flip). We refer to the collection of all
list entries for a single key as a tower. Of these entries, we
refer to the topmost entry as a plateau node, and each of
the remaining entries as tower nodes. Each element contains
a pointer to its neighbors to the right and in the list be-
low. Each list level is bookended by default values known
as sentinels, which we represent with the —oo and oo values.
The top list contains only these two sentinels by definition,
and the —oo sentinel in the top list is referred to as the root
element.

Skip lists have the desirable property of being able to per-

form GET, PUT, and DELETE queries in expected O(logn)
time, where n is the number of elements in the set S. To
search for an element s;, we begin at the root element. Re-
calling that each element in the skip list has a pointer to the
next element to the right and the corresponding element in
the list below, we first check the element to the right of the
root element. If this element’s key is less than the key of s;,
then we navigate to this element. Otherwise, we descend to
the next level of the skip list. By repeating this process until
we reach the lowest level, we will either locate s; or identify
two consecutive elements that prove the nonexistence of s;.
The entire operation takes O(logn) time with high proba-
bility.

Insertion is performed similarly. First, the same path is
traversed as in the case of a GET query to determine where
in the lowest list the new element should be inserted. With
each node traversed in the search, we push that node onto a
stack. After identifying the appropriate insertion location,
coin flips are simulated to determine how many levels up the
new item should propagate, and then pointers are adjusted
to insert the item, using the stack to determine which nodes
require pointer correction. To perform deletion, the same
search is performed, and pointers are adjusted accordingly
as with insertion.

2.2 Commutative Hashing

Goodrich and Tamassia introduce the concept of commuta-
tive hashing [4]. A commutative hash function is a function
that takes two arguments, maintains all properties of tra-
ditional collision-resistant hash functions, and produces the
same output regardless of the ordering of its arguments. For
example, given a traditional collision-resistant hash function
f, a trivial commutative hash function A can be constructed
such that:

h(xv y) = f(min{:v, y}v max{:v, y})

Commutative hashing conveniently simplifies schemes that
use pairwise hashing to accumulate many inputs by elimi-
nating the need for strict ordering of each pair.

2.3 Authenticated Skip Lists

Using the skip list and commutative hashing, Goodrich and
Tamassia address the problem of authenticity and integrity
in outsourced file storage by presenting a new data struc-
ture: the authenticated skip list [4]. An authenticated skip list
functions similarly to a Merkle tree [5], where each leaf node
contains the hash of a data object, and nodes are hashed
together to form a directed, acyclic graph leading to a single
root node that represents a digital signature on the entire
data set. In our case, the lowest list of the skip list contains
nodes generated using the hashes of each data object in the
set S, and these hashes are propagated as depicted in Fig-
ure 2. The root hash, also known as the basis, is stored at

Figure 1: Search for element 39 in a skip list. The nodes visited and the links traversed are drawn with thick lines. This successful search visits
the same nodes as the unsuccessful search for element 42. Skip list figures used with permission from [3]

D

P\P\P\A AN

38 39 44 30 53 e

Figure 2: Hash information is propagated from the leaf nodes to a single root hash. Arrows indicate the propagation of hash information. The
search path (and proof) for an authenticated GET query for object 39 is shown in bold.

the location of the —oo sentinel in the top list of an ordi-
nary skip list. The basis is also stored by the client in local
storage or is available as a digitally signed, trusted value.

To verify the integrity of a data element s;, we first per-
form a search query for that item’s key in our authenticated
skip list, pushing neighboring elements along the search path
onto a stack. The stack containing the neighbors of this
search path constitutes a proof that enables the client to ver-
ify the integrity of that particular element. On downloading
a copy of the data element, the client computes the hash of
this data element, and commutatively hashes each sequen-
tial element in the proof to recalculate the basis. This newly
calculated basis is compared to the expected basis stored by
the client; if these bases match, the element is authenticated.
This technique ensures that an adversary cannot provide a
fake proof of authenticity unless a collision in the hash func-
tion has been found.

To perform an insertion or deletion, each appropriate node
in the authenticated skip list must be updated to correctly
propagate hash information up the structure, and the ba-
sis must be recalculated. A search for the new element is
performed as described above, keeping relevant neighbors in
a stack as before. After verifying that this provided search
path hashes to the expected basis, the client updates each
successive element to propagate hash information appropri-
ately and recomputes its locally stored basis.

Amazon S3’s LIST query, which returns the keys of all
items matching a specified prefix, can be authenticated by
returning the hashes of each element matching the specified
prefix, the height of each tower associated with these ele-
ments, and proofs for GET queries on the items immediately

before and after the matching list. With this information,
the client can reconstruct the necessary portion of the skip
list, verify that the returned list items commutatively hash
to the expected basis, and know for certain that no elements
matching the LIST query have been omitted.

Goodrich, Tamassia, and Schwerin present an implemen-
tation of these algorithms using a three-party model, featur-
ing a client, an untrusted storage server, and an authenti-
cation server responsible for maintaining the authenticated
skip list data structure in memory [3]. On each GET query,
the client requests the data object from the storage server,
and a corresponding proof of integrity from the authenti-
cation server. To perform a PUT or DELETE query, the
client performs the desired operation on the storage server,
requests information necessary to recompute its local copy of
the basis, and instructs the authentication server to update
its data structure.

2.4 Incremental Hashing

Stanton, McKeown, et al. present FastAD, an authenti-
cated skip list implementation designed to minimize I/O
costs to allow efficient storage of authentication data on disk
[6]. They apply the technique of incremental hashing [7],
which reduces the number of disk accesses required for GET
queries by grouping authentication nodes in blocks, rather
than relying on pairwise computation. An incremental hash
is computed for an entire block, such that the proof size for
a particular element is reduced to O(log, n), where k is the
number of elements per block. The authors evaluate perfor-
mance using the MuHash and AdHash algorithms.

2.5 Path Hints

FastAD also presents a technique of using path hints to fur-
ther minimize disk access. FastAD caches the most recently
computed proof of authenticity for each object on the au-
thentication server. On querying an object, this cached path
hint is first retrieved, before resuming the original authenti-
cation process. If at any point in the traversal of the skip list
a visited node’s hash matches a hash in the path hint, the
proof is “short-circuited” and no more disk I/O is incurred.
Instead, the proof is concluded by using the remainder of the
path hint. In order to increase the accuracy of path hints, all
objects in FastAD are given incrementally increasing identi-
fiers and inserted at the tail end of the skip list. This causes
large sections of the skip list to remain stable in the face of
updates, ensuring that path hints are more reliable.

3 Overview

3.1 Limitations of Previous Designs

Several limitations of previously proposed solutions motivate
the design of our new scheme. Heitzmann, Palazzi, et al.
present an implementation of an authenticated skip list [§]
using the Jets3t Cockpit Amazon S3 client [9]. The imple-
mentation requires an additional third-party authentication
server, which could be provided by the client or rented via
a service such as Amazon’s Elastic Compute Cloud (EC2)
[10]. This additional requirement poses significant mainte-
nance and financial overhead. In addition, it becomes impos-
sible to accurately attribute the cause of an authentication
failure to the storage server or the authentication server -
failure will be detected, but it will be unclear which party is
at fault. Finally, this implementation stores authentication
information in memory on the external server. While this
choice allows fast retrieval and updates of authentication in-
formation, the lack of persistent storage and the inability to
scale to larger data sets are significant drawbacks.

FastAD addresses some of these issues, but is not with-
out its own limitations. The FastAD system still requires an
independent authentication server for verification. In order
to minimize disk I/O, objects are inserted into the skip list
with incremental identifiers, to ensure the stability of large
portions of the data structure. This optimization allows for
better path hint performance, but because objects are no
longer ordered by their natural identifiers, proofs for the re-
sults of LIST queries are no longer computationally efficient.
In addition, forcing insertion towards the tail end of the skip
list makes deletion a costly operation requiring an expensive
compaction algorithm. While this might be acceptable if the
authentication information were stored on a server capable
of computation, our model seeks to eliminate this server, re-
quiring all computation to be performed by the client and
making compaction less appealing.

3.2 Our Contributions

We make several contributions to address these limitations.
Firstly, our model eliminates the need for an independent au-
thentication server, instead requiring instrumentation solely
in the client. Since our model stores everything in persistent
storage, we must justify our choice of data format for storing
authentication information and our preferred mechanism for
retrieval of this information. We determined that on Ama-
zon S3, using GET queries for files containing authentica-
tion data is significantly faster than using LIST queries to
retrieve authentication data stored in metadata.

Next, we adopt FastAD’s insight that utilizing a caching
layer may significantly increase performance. We cache the
most recent proof of authenticity for each object in the data
set on the storage server. On querying an object, we first
retrieve the path hint for the object. Then, we begin the
query as usual at the root node. Whenever we encounter a
node in our skip list traversal that matches a node in the
path hint, we cease querying and use the remainder of the
path hint as our proof. This optimization significantly re-
duces the number of queries we must perform on average,
and in the worst case merely replaces the query for the hash
of the data object itself.

FastAD orders its data elements sequentially to stabilize
large sections of the skip list, making path hints more ef-
fective. Because this design decision eliminates the ability
to verify LIST queries efficienty, we have elected to instead
examine the effectiveness of caching in our setting, where
data objects are ordered by key. Even without the increased
stability provided by sequential insertion, caching provides
worthwhile benefits in the average case.

Incremental hashing is significantly more complex when
objects are sorted by key - in order to maintain a constant
block size during insertion into or deletion from the middle
of the skip list, a large portion of the skip list would need to
be recomputed. In addition, LIST queries would be difficult
to verify, because ranges of keys may span multiple blocks.
Instead of using incremental hashing, we continue to use
pairwise commutative hashing and ordering by key.

Finally, we introduce a user-defined settings that we re-
fer to as probabilistic integrity verification, which allows the
client to confirm data integrity with high probability (rather
than with absolute certainty), reducing performance over-
head. We note that all PUT and DELETE operations must
be authenticated to maintain a consistent authenticated skip
list, but GET and LIST queries may be optionally trusted
without proving integrity.

4 Design Details

We have developed an implementation of our design in Java.
We note that actual disk I/O operations are handled exclu-
sively by the storage provider, and are abstracted from the
client. As such, the basic cost unit we wish to minimize is
the number of queries over the network, each of which is
presumably associated with some reasonably executed disk
operation on the storage server.

4.1 Hashing

Any candidate collision-resistant hash function may be
adapted for use as a commutative hash function in our
scheme. We chose to use SHA-256 for our implementation,
but any secure hashing algorithm may be easily substituted.
We wish to note that merely hashing the contents of a data
object is not sufficient to prevent all attacks. For example,
a client could request an object from a malicious storage
server that returns a completely unrelated object and its
proof, potentially tricking the client into accepting invalid
or irrelevant data. By hashing the contents of each data ob-
ject along with their specified identifiers, such attacks can
be prevented.

4.2 Skip List Naming Scheme

Our implementation translates the in-memory skip list im-
plementation directly to an on-disk data structure. Each

node of the skip list is represented by a small file on the stor-
age server. Based on the results of preliminary experiments,
we have elected to retrieve these files via GET queries, rather
than storing all information in metadata (Section 5.1.2).
The name of a node contains its corresponding key and its
level in the skip list, separated by a delimiter. Each node
is prefixed by a special identifier to distinguish ordinary ele-
ment nodes from the left and right sentinels. The contents of
each skip list file are simply the cumulative hash associated
with that element, the key of that element’s right neighbor,
and whether or not that element is a tower or plateau node.

4.3 Path Caching

We wish to make use of a path caching scheme that is of max-
imum utility for queries, but requires minimal space for each
cache entry. We note that a minimal proof for a given object
merely consists of the neighbors along that object’s search
path in the skip list structure. However, a minimal proof is
not sufficient for path caching, since the client will be unable
to easily match this proof to the path being traversed in a
search. While each neighbor element in the minimal proof
could be matched individually, what we are actually inter-
ested in is whether the accumulated hash, represented by the
label of a node along the search path (rather than a neigh-
bor), matches a portion of the cached path. Therefore, our
cached paths must contain not only neighbors of the search
path, but the labels of the search path itself, representing
this accumulation of hash information.

Each cached path is titled based on the corresponding
element key, prefixed by an identifier used by all cached items
to denote a path hint as opposed to a skip list node. Each
path hint can be structured as follows:

(s0) : (n1), (1) : (n2), (s2) : ... : (nk), (sk)

Each s entry contains the full information for a node along
the search path, and each n entry contains only the hash of
a neighboring node. so refers to the root of the authenti-
cated skip list, and sj refers to the node corresponding to
the requested data object. Entries are ordered such that
each entry’s hash is the commutative hash of the two hashes
in the next delimited group. Nodes that contain the same
cumulative hash as a previous node on the search path are
ommitted to save space.

After being retrieved, each path hint is parsed and kept in
memory on the client machine. Comparing a traversal node
to the nodes of the path hint requires O(logn) time (the size
of the path hint with high probability), but this operation
is performed in memory and is negligible in comparison to
the network and disk I/O costs associated with fetching data
from the storage server.

4.4 Exploiting Parallelism

Noting that the primary cost in authenticating outsourced
files is the network I/O between the client and storage server,
we can significantly reduce overhead by parallelizing as many
queries as possible. For every operation (GET, PUT, LIST,
and DELETE), the corresponding authentication queries are
performed in a separate thread from the actual request. As
a result, performance is significantly improved for operations
on larger files, since authenticated these files may complete
before the requested file itself is finished uploading or down-
loading.

Further parallelism can be used to speed up the PUT and
DELETE queries. Both of these operations require nodes of

the skip list along the search path to be recomputed. To op-
timize, we download the appropriate nodes required for au-
thentication, recompute their hashes and neighbors locally,
and upload everything simultaneously rather than sequen-
tially, resulting in another performance boost.

4.5 Probabilistic Integrity Verification

By specifying a threshold, the user can define the proportion
of GET and LIST queries that will be authenticated. Over
time, integrity of all the transferred data will be confirmed
with high probability. This optional threshold may be in-
appropriate for certain settings, such as those highly critical
information, but may provide a performance boost for many
typical applications relying on outsourced storage.

Assume the client sets a threshold ¢, between 0 and 1.
Whether or not an individual query is authenticated should
be decided randomly, with odds correlated to this threshold.
It is important to randomize the authentication of queries, or
a malicious storage server could predict which queries would
be authenticated and provide incorrect responses only on
unauthenticated queries.

Call ¢ the randomly distributed proportion of responses
by the storage server that contain invalid data. The proba-
bility of the client detecting that there is at least one piece of
invalid data can be calculated as P =1 — (1 — c¢*t)", where
n is the number of queries that have been performed. Fig-
ure 3 shows the number of queries that must be performed to
achieve several probabilities of failure detection with various
threshold levels.

50% 95% 99%

t=1/2 139 598 919
t=1/5 347 1,497 | 2,301
t=1/10 693 2,005 | 4,603
t=1/50 3,466 | 14,078 | 23,024
t=1/100 | 6932 | 29,965 | 46,050
t=1/500 | 34,658 | 149,786 | 230,257
t=1/1000 | 69,315 | 299,572 | 460,515

Figure 3: The number of queries required to guarantee detection
of corruption with specified probabilities, assuming a fixed value of
¢ = .01 (1% of responses are invalid), with various threshold settings.

5 Analysis

There are two metrics by which we can evaluate the feasibil-
ity of our new authentication scheme. First, we will conduct
performance evaluations supporting the viability of our con-
tributions. Next, we will estimate the additional financial
expense incurred by our design and compare to the cost of
previous schemes.

5.1 Performance
5.1.1 Data Format

Each authentication node must store a key, a level in the skip
list, a next pointer (the key of the element immediately to the
right), a label (the hash propagated up until that point), and
a state (whether or not this node is a plateau or a tower). We
justify the data format for authentication data by comparing
two options. The first option involves storing all authentica-
tion in the name of an empty file, and using Amazon’s LIST
query to request information as needed. The second option

instead stores only the key and level as the file name, and
keeps the remaining information in the file’s data.

To compare these two options, we created a simulated au-
thenticated skip list to authenticate 10,000 uniquely keyed
objects, and stored this skip list using each data format in
two separate Amazon S3 buckets. Next, we manually se-
lected 100 authenticated skip list nodes and measured the
time required to retrieve all 100 nodes from S3, using LIST
queries for the first scheme and GET queries for the second.
We specified in our LIST requests that S3 should return a
maximum of one result, in an attempt to eliminate unneces-
sary searching. We repeated this experiment 100 times, after
which we computed the average retrieval time and standard
deviation for each of the two data format options on our syn-
thetic skip list. All queries were executed as REST requests
via the Python S3 library provided by Amazon.

Request Avg. Time | Std. Dev.
100 GET requests 8476 ms 1359 ms
100 LIST requests 13120 ms 3471 ms

Figure 4: Average times and standard deviations of 100 trials, each
issuing 100 requests of specified type.

We found that storing only key and level information in
the file name and relying on GET queries to retrieve the rest
of the information was significantly faster on average. The
two schemes require identical space requirements - Amazon
S3 charges for space used, regardless of whether data is con-
tained within a file or as metadata. Finally, LIST queries
are more expensive per query with Amazon’s pricing. Based
on this evidence, storing authentication information in file
data is our best option.

5.1.2 Query Performance

To assess the performance of our client-only implementa-
tion, we compare with unauthenticated operations in a re-
alisitc setting. We created a synthetic data set of 100,000
unique items, which we then uploaded to Amazon S3 using
our authentication scheme. This data set represents a base-
line that allows us to simulate performance at a reasonable
scale. We then measured the time required to perform 1,000
PUT queries for files of varying sizes: 1kb, 1mb, and 10mb.
Next, we measured the time required to perform 1,000 GET
queries on each of these newly added files. We repeated these
GET queries twice, to demonstrate the extent to which path
hints improve performance. For comparison, we repeated
each of these experiments using unauthenticated operations.
Our experiments were performed on an AMD Phenom II x4
955 quad-core processor running Linux 2.6.26.

From these results (Figures 5 and 6), we can determine
which types of workloads would be best suited for our au-
thentication scheme. Our experimental results confirm that
there is minimal performance cost for GET queries that al-
ready have a corresponding path hint cached. As a result,
read-intensive workloads will clearly perform best, because
each GET request generates a fresh path hint without in-
validating other paths. In fact, our path caching scheme has
the desirable property that the most frequently read objects
will have the most up-to-date path hints, and as such will
have the best performance.

These results also confirm our intuition that workloads
requiring the transfer of larger files will outperform those
that transfer smaller files, in terms of additional overhead

caused by authentication. Our data suggests that there is
an essentially constant (relative to the size of the data set)
baseline performance penalty associated with authenticating
queries, and for the workloads we tested, this penalty was
greater than the time required to download or upload the
corresponding data object. However, for larger data objects,
the authentication process will complete before finishing the
transfer of the object, resulting in a much more acceptable
performance penalty.

5.2 Cost

Each piece of authentication information incurs an addi-
tional storage overhead. Consider a set of data objects S
with n elements. On average, the expected number of au-
thentication nodes is approximately 2 % n, with each node
requiring approximately 48 bytes, assuming an average key
length of twelve characters, use of the SHA-256 hash func-
tion, and including delimiters.

In addition to authentication data, we will assume each
element contains a cached path hint. As a reasonable esti-
mate, we assume each path hint will contain full information
for 2 % log, n nodes, which represents the expected size of a
search path in a probabilistic skip list where the probability
of propagating a node to the next level of the skip list is .5.
As before, we will use 48 bytes as our average node size.

Amazon S3’s billing charges depend on the amount of
space used. At the time of this writing, Amazon’s stan-
dard United States hosting charges are $0.150 per GB for
the first 50 TB, $0.140 per GB for the next 50 TB, $0.130
per GB for the next 400 TB, $0.105 per GB for the next 500
TB, $0.080 per GB for the next 4000 TB, and $0.055 per
GB for storage used over 5000 TB.

Figure 7 displays the estimated monthly storage costs in-
curred by our design for varying dataset sizes and average
object sizes. Because the cost of our design is relative to
the number of objects regardless of their size, larger average
object sizes result in lower costs for our design due to better
pricing rates.

In addition to storage costs, our design incurs additional
charges for data transfer, which will vary with different work-
loads. Currently, Amazon S3 charges $.01 per 1,000 PUT
or LIST requests, $.01 per 10,000 GET requests, and vary-
ing charges for the amount of data transferred in and out,
depending on the total volume transferred monthly. Data
transfer rates are identical to those of EC2.

Given the very small size of the average authentication
node (estimated at 48 bytes), data transfer charges con-
tribute very little to overall costs. For example, the transfer
of 1 million authentication nodes via GET requests costs a
total of $0.08 in volume charges, with an additional $1.00
in “per request” charges. Even with sites with very large
data sets and very high workloads, we expect data transfer
costs to be reasonable. For example, authenticating 1 mil-
lion GET requests for a data set of 1 billion objects incurs an
estimated additional cost of $64.56 without the help of path
hints, which may further reduce costs. Collectively, the ad-
ditional expenses of storage and data transfer are negligible
in comparison to the ordinary operational costs associated
with maintaining actual data sets and workloads. Our design
costs significantly less than previously proposed three-party
solutions requiring an external authentication server.

Authenticated PUT | Unauthenticated PUT
1 kb 8178 ms 79 ms
1 mb 9197 ms 951 ms
10 mb | 10718 ms 7502 ms

Figure 5: Average time to PUT a single node using described method, computed from the average of 1,000 requests.

Authenticated GET | Cached GET | Unauthenticated GET
1 kb 7326 ms 298 ms 32 ms
1 mb 7481 ms 832 ms 691 ms
10 mb | 7603 ms 2870 ms 2603 ms

Figure 6: Average time to GET a single node using described method, computed from the average of 1,000 requests.

1kb Imb | 1gb EC2
100 items <S$01 | <$01 | <$0I | $61.20
1,000 items <S$0I | <$.01 | <$.0I | $61.20
10,000 items <S$0L | <$01 | <$.0I | $61.20
100,000 items $.02 $.02 $.02 $61.20
1,000,000 items $.28 $.28 $.26 $61.20
10,000,000 items $325 | $3.25 | $2.28 | $244.80
100,000,000 items | $36.08 | $36.08 | $513.56 | $864.00
1,000,000,000 items | $414.37 | $386.74 | $151.93 | N/A

Figure 7: Total additional monthly storage costs of our design, based on number of data objects and average data object size. Monthly cost of
renting an EC2 server with sufficient resources to store authentication data in memory is provided for comparison.

6 Conclusion

We have presented the design details for a two-party model
for authenticating data in the cloud. Our design requires no
instrumentation beyond the client, and attempts to min-
imize both performance and financial cost. By adapting
insights from previous work, we are able to optimize per-
formance while maintaining the flexibility of being able to
perform efficient LIST queries. We have proposed the fea-
tures of probabilistic integrity verification, and caching in a
sorted-key setting.

Our experimental results demonstrate that our scheme is
not without a significant performance cost, but that GET
queries on objects that have been cached perform nearly as
well as unauthenticated queries. The highest priority for
future work should be further improving performance. In
particular, exploring alternative data structures in this set-
ting, especially those that allow for “fat nodes” containing
larger fragments of the search tree, might minimize costs by
reducing the number of queries required to return authenti-
cation information. Additional optimizations might include
hashing downloaded data objects in pieces as they arrive,
rather than hashing the entire object in one pass. Our im-
plementation represents a promising starting point that may
lay the groundwork on which future enhancements may be
incorporated.

References

[1] Amazon s3 (simple storage service), http://aws.amazon.
com/s3.

[2] W. Pugh, Skip lists: A probabilistic alternative to balanced
trees, 1990.

[3] M. T. Goodrich, R. Tamassia, and A. Schwerin, Imple-
mentation of an authenticated dictionary with skip lists and

commutative hashing, in DARPA Information Survivabil-
ity Conference and FExposition, pp. 6882, IEEE Computer
Society Press, 2001.

[4] M. T. Goodrich and R. Tamassia, Tech. Rep., Johns Hopkins
Information Security Institute Report No., , 2001 (unpub-
lished).

[5] R. C. Merkle, A certified digital signature scheme, pp. 218-
238, 1990.

[6] P. T. Stanton, B. McKeown, R. Burns, and G. Ateniese,
Fastad: An authenticated directory for billiions of objects,
in Proceedings of the 1st Workshop on Hot Topics in Storage
and File Systems, 2009.

[7] M. Bellare and D. Micciancio, A new paradigm for collision-
free hashing: incrementality at reduced cost, in In FEuro-
crypt97, pp. 163-192, Springer-Verlag, 1997.

[8] A. Heitzmann, B. Palazzi, C. Papamanthou, and R. Tamas-
sia, Efficient integrity checking of untrusted network storage,
in Proc. ACM CCS Int. Workshop on Storage Security and
Survivability (STORAGESS), pp. 43-54, 2008.

[9] Jets3t, an open source java toolkit for amazon s3, http:
//jets3t.s3.amazonaws.com.

[10] Amazon ec2 (elastic compute cloud), http://aws.amazon.
com/ec2.

