

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #2

Introduction

● Jon Oberheide

● Dan Rosenberg

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #3

Introduction

● Jon Oberheide

● Dan Rosenberg

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #4

Introduction

“I get excited every time I see a
conference add requirements to
their talk selection along the lines
of 'exploitation presentations must
be against grsecurity/PaX' -- but
then there never ends up being any
presentations of this kind.”

– spender pratt

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #5

Agenda

● A review of Linux kernel security

● Exploitation vs. grsecurity/PaX

● Bypassing grsecurity/PaX

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #6

A decade of kernel security

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #7

A decade of kernel security

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #8

Upstream attitude

● Security is hard when upstream ignores the problems

● Linux still hasn't had its “security awakening”

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #9

How about last year?

● 142 CVE's assigned
● 30% worse than the previous worst year (2009)
● Based on public CVE requests, issues tracked at

Red Hat Bugzilla, and Eugene's tagged git tree
● Missing dozens of non-CVE vulnerabilities (i.e. the

“Dan Carpenter factor”)

● 61 (43%) discovered by six people
● Kees (4), Brad (3), Tavis (7), Vasiliy (4), Dan (37),

Nelson (6)

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #10

Kernel vulns in 2010

● 12 known exploits for local privilege
escalation

● 13 remotely triggerable issues
● 33 potential privilege escalations

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #11

Breakdown by Target

31

33

76

2

Core
Distro
Exotic
Red Hat

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #12

Breakdown by Impact

13

65
30

7

26
1

Bypass
DOS
Info
Priv Esc?
Priv Esc
Nothing

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #13

Interesting exploits of 2010

● full-nelson.c
● Combined three vulns to get a NULL write

● half-nelson.c
● First Linux kernel stack overflow (not buffer overflow) exploit

● linux-rds-exploit.c
● Arbitrary write in RDS packet family

● i-CAN-haz-MODHARDEN.c
● SLUB overflow in CAN packet family

● american-sign-language.c
● Exploit payload written in ACPI's ASL/AML

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #14

Agenda

● A review of Linux kernel security

● Exploitation vs. grsecurity/PaX

● Bypassing grsecurity/PaX

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #15

Traditional Linux exploitation

● Perhaps most general exploitation
primitive is an arbitrary kernel write

● Sometimes occurs naturally, other
times can be constructed (e.g.
overwriting pointers in an overflow to
trigger a write)

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #16

Linux exploitation examples

● Writes to known addresses (IDT)
● Function pointer overwrites
● Redirecting control flow to userspace
● Influencing privesc-related kernel data

(eg. credentials structures)
● Relying on kallsyms and other info

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #17

Overview of grsecurity/PaX

● grsecurity/PaX
● Third-party patchset to harden Linux

userspace/kernel security

● Attempts to prevent
● Introduction/execution of arbitrary code
● Execution of existing code out of original order
● Execution of existing code in original order with

arbitrary data

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #18

grsecurity/PaX hardening

● Kernel hardening features:
● KERNEXEC

● Prevent the introduction of new executable code
● UDEREF

● Prevent invalid userspace pointer dereferences
● HIDESYM

● Hide info that may be useful to an attacker (kallsyms,
slabinfo, kernel address leaks, etc)

● MODHARDEN
● Prevent auto-loading of crappy unused packet families

(CAN, RDS, econet, etc)

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #19

Agenda

● A review of Linux kernel security

● Exploitation vs. grsecurity/PaX

● Bypassing grsecurity/PaX

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #20

The main event

● A technique we call stackjacking

● Enables the bypass of common grsecurity/PaX
configurations with common exploit primitives

● Independently discovered, collaboratively
exploited, with slightly different techniques

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #21

Plan of attack!

STACK
JACKING

OVERVIEW
ROOT

???

PRIMITIVES

??????

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #22

Target kernel assumptions

● Hardened kernel with grsec/PaX
● Config level GRKERNSEC_HIGH
● KERNEXEC
● UDEREF
● HIDESYM
● MODHARDEN
● Etc...

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #23

Stronger target assumptions

● Let's make some extra assumptions
● We like a challenge, and these are assumptions that

may possibly be obtainable now or in the future

● Stronger target assumptions
● Zero knowledge of kernel address space
● Fully randomized kernel text/data
● Cannot introduce new code into kernel address space
● Cannot modify kernel control flow (eg. data-only)

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #24

Attacker assumption #1

● Assumption: arbitrary kmem write
● A common kernel exploitation primitive
● Examples: RDS, MCAST_MSFILTER
● Other vulns can be turned into writes, e.g.

overflowing into a pointer that's written to

● Wut?
● “You mean I can't escalate privs with an arbitrary

kernel memory write normally?” NOPE.

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #25

Arbitrary write into the abyss

(TASK_SIZE)

0xffffffff

user

kernel

0xc0000000

0x00000000
No clue where to write!

Exploitation is infeasible.

DARKNESS!

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #26

What's the secret sauce?

ARBITRARY
WRITE + = <3?

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #27

Maybe?

ARBITRARY
WRITE + = <3

dave?

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #28

Nah, he's taken

+ = <3

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #29

Need to know something

● One way: arbitrary kmem disclosure
● procfs (2005)
● sctp (2008)
● move_pages (2009)
● pktcdvd (2010)

● Just dump entire address space!
● But these are rare!
● And in many instances, mitigated by grsec/PaX

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #30

Something more common?

● How about a more common vuln?
● Hints...

● Widely considered to be a useless vulnerability
● Commonly assigned a CVSS score of 1.9 (low)
● 25+ such vulnerabilities reported in 2010
● Often referred to as a Dan Rosenbug

● Can you guess it???

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #31

KSTACK MEM DISCLOSURE!

ARBITRARY
WRITE + = <3KSTACK

LEAK

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #32

How does kstack leak help?

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #33

A bit about Linux kernel stacks

4k/8k
stack

unused

grows down

low address

high address● Each userspace thread is
allocated a kernel stack

● Stores stack frames for kernel
syscalls and other metadata

● Most commonly 8k, some
distros use 4k

● THREAD_SIZE =
2*PAGE_SIZE =
2*4086 = 8192

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #34

Kernel stack mem disclosures

● Kstack mem disclosures
● Leak of memory from the kernel stack to userspace

● Common cause
● Copying a struct on the kstack back to userspace

with uninitialized fields
● Improper initialization/memset, forgetting member

assignment, structure padding/holes
● A frequent occurrence, especially in compat

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #35

Kernel stack mem disclosures

.

.

.

1) process
makes syscall
and leaves
sensitive data
on kstack

2) kstack is reused
on subsequent
syscall and struct
overlaps with
sensitive data

foo.baz

sensitive data

kstack frame

foo.bar

struct foo {
 uint32_t bar;
 uint32_t leak;
 uint32_t baz;
};

syscall() {
 struct foo;
 foo.bar = 1;
 foo.baz = 2;
 copy_to_user(foo);
}

foo.leaksensitive data

3) foo struct is copied to
userspace, leaking 4
bytes of kstack through
uninitialized foo.leak
member

kstack frame

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #36

Thanks ddz!

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #37

Plan of attack!

STACK
JACKING

OVERVIEW
ROOT

?????????

Kstack disclosure

Arbitrary write

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #38

What's useful on the kstack?

● Leak data off kstack?
● Sensitive data left behind? Not really...

● Leak addresses off kstack?
● Sensitive addresses left behind? Maybe...

● Pointers to known structures could be exploited
● Too specific of an attack!

● Need something more general
● kstack disclosures differ widely in size/offsets

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #39

Kernel stack addresses

● How about a leaking an address that:
● Is stored on the stack; and
● Points to an address on the stack

● These are pretty common
● Eg. pointers to local stack vars, saved ebp, etc

● But what does this gain us?

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #40

Kernel stack self-discovery

● If we can leak an pointer
to the kstack off the kstack,
we can calculate the base
address of the kstack

.

.

.

0xcdef1234

kstack frame

We call this kstack self-discovery

kstack_base = addr & ~(THREAD_SIZE – 1);

kstack_base = 0xcdef1234 & ~(8192 – 1)

kstack_base = 0xcdef0000 0xcdef0000

0xcdef2000

0xcdef1234
0xdeadbeef

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #41

Effective kstack discovery

● Not all kstack disclosures are alike
● May only leak a few bytes, non-consecutive
● How do we effectively self-discover?

● Manual analysis
● Figure out where kstack leak overlaps addresses

● Automatic analysis
● libkstack

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #42

Manual kstack self-discovery

● Manual, offline analysis
● 1. prime stack with random syscall
● 2. leak bytes, see if any leaks match real kstack
● 3. repeat until we've collected enough bytes
● 4. construct list of priming syscalls needed for the

particular leak to spill the beans

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #43

Automatic with libkstack

● We can automate this process for
runtime self-discovery with libkstack
● 1. prime stack with random syscall
● 2. leak bytes, infer whether bytes belong to a kstack

addr
● 3. repeat until we have sufficient confidence to

calculate the kstack base addr

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #44

Plan of attack!

STACK
SELF-DISCOVERY

Manual analysis

Auto with libkstack

STACK
JACKING

OVERVIEW
ROOT

??????

Kstack disclosure

Arbitrary write

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #45

No longer complete darkness

(TASK_SIZE)

0xffffffff

user

kernel

0xc0000000

0x00000000

A random pinpoint of light!

We can self-discover kstack address!
Exploitation is...maybe feasible?

kstack

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #46

The next step

● We now have a tiny island
● Use arbitrary write to modify anything on kstack

● Where to write?
● Pointers, data, metadata on kstack

● What to write?
● No userspace addrs (UDEREF), limited kernel

● Game over? Not yet!

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #47

Metadata on kernel stack

thread_info struct stashed at base of kstack!

4k/8k
stack

unused

grows down

thread_info

low address

stack pointer

start of stack
high address

current_thread_info

Anything else of interest on the kstack???

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #48

thread_info candidates

● What can we
modify within
thread_info to
escalate privs?

struct thread_info {
 struct task_struct *task;
 struct exec_domain *exec_domain;
 __u32 flags;
 __u32 status;
 __u32 cpu;
 int preempt_count;
 mm_segment_t addr_limit;
 struct restart_block restart_block;
 void __user *sysenter_return;
#ifdef CONFIG_X86_32
 unsigned long previous_esp;
 __u8 supervisor_stack;
#endif
 int uaccess_err;
};

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #49

restart_block func ptr?

● restart_block?
● Has a func ptr we

can overwrite and
invoke via userspace!

● Can't point to
userspace (UDEREF)

● Can't point to kmem
(blackbox)

● Plus assuming no
control flow mod

struct thread_info {
 struct task_struct *task;
 struct exec_domain *exec_domain;
 __u32 flags;
 __u32 status;
 __u32 cpu;
 int preempt_count;
 mm_segment_t addr_limit;
 struct restart_block restart_block;
 void __user *sysenter_return;
#ifdef CONFIG_X86_32
 unsigned long previous_esp;
 __u8 supervisor_stack;
#endif
 int uaccess_err;
};

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #50

task_struct pointer?

● task_struct?
● Could point it at

init_task_struct for
getting creds/caps of
the init task

● But we don't know
the address of
init_task_struct!

struct thread_info {
 struct task_struct *task;
 struct exec_domain *exec_domain;
 __u32 flags;
 __u32 status;
 __u32 cpu;
 int preempt_count;
 mm_segment_t addr_limit;
 struct restart_block restart_block;
 void __user *sysenter_return;
#ifdef CONFIG_X86_32
 unsigned long previous_esp;
 __u8 supervisor_stack;
#endif
 int uaccess_err;
};

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #51

Attacking task_struct

● task_struct->creds?
● Modify creds of our process

directly to escalate privileges?
● But in order to write

task_struct->creds, we need
to know the address of
task_struct!

● If we could read the address
of task_struct off the end of
the kstack, we might win!

struct thread_info {
 struct task_struct *task;
 ...
};

struct task_struct {
 ...
 const struct cred *real_cred;
 const struct cred *cred;
 ...
};

struct cred {
 ...
 uid_t uid;
 gid_t gid;
 ...
};

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #52

Connecting the dots

(TASK_SIZE)

0xffffffff

user

kernel

0xc0000000

0x00000000

Expanding our visibility

If we can read off the kstack,
we can find task_struct/creds!

kstack

task_struct

creds

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #53

Attacking task_struct

● We have write+kleak
● Can we turn this into an arbitrary read?

● If we can get arbitrary read:
● Read base of kstack to find address of task_struct
● Read task_struct to find address of creds struct
● Write into creds struct to set uids/gids/caps
● Spawn a root shell!

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #54

Plan of attack!

STACK
SELF-DISCOVERY

Manual analysis

Auto with libkstack

STACK
JACKING

OVERVIEW
ROOT

??????

Kstack disclosure

Arbitrary write

STACK
JACKING

Read thread / task

Overwrite creds

STACK
GROPING

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #55

The Rosengrope Technique

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #56

Remember thread_info?

struct thread_info {
 struct task_struct *task;
 struct exec_domain *exec_domain;
 __u32 flags;
 __u32 status;
 __u32 cpu;
 int preempt_count;
 mm_segment_t addr_limit;
 struct restart_block restart_block;
 void __user *sysenter_return;
#ifdef CONFIG_X86_32
 unsigned long previous_esp;
 __u8 supervisor_stack;
#endif
 int uaccess_err;
};

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #57

Vanilla kernel

● No segmentation, user/kernel separation
enforced by paging

● copy_*_user functions check user pointers
against addr_limit (per-thread variable in
thread_info struct)

● On vanilla, setting addr_limit to
KERNEL_DS (ULONG_MAX) gives
arbitrary read/write (all checks pass)

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #58

set_fs()

● Sometimes kernel wants to reuse code
with kernel pointer arguments
● kernel_sendmsg, kernel_recvmsg, etc.

● Calls set_fs(KERNEL_DS) to set
addr_limit and allow copy_*_user
functions to copy kernel-to-kernel

● Careful to make sure no user-influenced
pointers are used

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #59

PAX_UDEREF

● Strict user/kernel separation using
segmentation

● Reload segment registers at kernel
traps, used during copy operations
● Fault on invalid access

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #60

PAX_UDEREF and KERNEL_DS

● Use %gs register to keep track of
segment for source/dest of copy

● set_fs(KERNEL_DS) sets addr_limit
and reloads %gs register to contain
__KERNEL_DS segment selector

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #61

No more easy root...

● Writing KERNEL_DS to addr_limit is
no longer sufficient

● Access checks on pointers will pass,
but we'll still fault in copy functions
because of incorrect segment
registers

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #62

But...

● %gs register is reloaded on context
switch (necessary to keep track of
thread state)

● Reloaded based on contents of
addr_limit!

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #63

Using KERNEL_DS trick

● Write KERNEL_DS into addr_limit of
current thread

● Loop on write(pipefd, addr, size)
● Eventually, thread will be scheduled out at right

moment (before copy_from_user)
● When thread resumes, %gs register will be

reloaded with __KERNEL_DS, and read target will
be copied into pipe buffer (kernel-to-kernel copying)

● Restore addr_limit and read

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #64

Plan of attack!

STACK
SELF-DISCOVERY

Manual analysis

Auto with libkstack

STACK
JACKING

OVERVIEW
ROOT

???

Kstack disclosure

Arbitrary write

STACK
JACKING

Read thread / task

Overwrite creds

STACK
GROPING

Rosengrope technique

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #65

Pros and cons of KERNEL_DS

● The Rosengrope technique
● Pros: clean, simple, generic method to obtain

arbitrary read from write+kleak
● Cons: depends on knowing the location of

addr_limit member of thread_info
● It's possible to move thread_info out of the kstack!

● Any alternatives?
● Let's get a bit crazier...

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #66

The Obergrope Technique

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #67

The Obergrope Technique

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #68

The Obergrope Technique

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #69

Attacking the kstack frames

● The Obergrope technique
● Don't attack the thread_info metadata on kstack
● Attack the kstack frames themselves!

● End goal is a read
● How to read data by writing a kstack frame?

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #70

Observations

● Lots of kernel codepaths copy data to userland,
via copy_to_user(), put_user(), etc

● There may be copy_to_user() calls that use a
source address argument that is, at some point,
stored on the kernel stack

● If we can overwrite that source address on the
kstack, we can control source of the
copy_to_user() and leak data to userspace

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #71

A problem

● How can we write to our own kstack?
● Unlikely to be able to write into our own stack while

exploiting the vulnerability for our arbitrary write

● Use parent/child processes
● Child self-discovers kstack addr
● Passes kstack addr to parent
● Parent writes into child while child is in syscall

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #72

More problems

● How can we write to stack reliably?
● We have a tricky race to win:

● Parent needs to write into child's kstack between
when the copy_to_user() source register is pushed
and popped from the kstack

● This is a very small race window...
.

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #73

Winning Linux kernel races

● How to win Linux kernel races
● Get very lucky w/scheduling on SMP machine
● Cause a resource to be in contention (eg. locks)
● Cause kernel to page in from slow I/O device

(sgrakkyu)

● Ehhh...
● We might hose the kernel if we lose the race
● Anything better?

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #74

A twist on winning races

● This isn't a “standard” race though
● We can have child execute ANY codepath that

performs copy_to_user() with a src arg on kstack

● Enter, sleepy syscalls!
● Syscalls that allow us to put process to sleep for an

arbitrary amount of time
● nanosleep, wait, select, etc

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #75

Sleepy syscall conditions

● Any of these sleepy syscalls have our
required conditions?

● Needs to:
● Push a register to the stack
● Go to sleep for an arbitrary amount of time
● Pop that register off the stack
● Use that register as the source for copy_to_user()

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #76

compat_sys_waitid

asmlinkage long compat_sys_waitid(int which, compat_pid_t pid,
 struct compat_siginfo __user *uinfo, int options,
 struct compat_rusage __user *uru)
{
 struct rusage ru;
...
 ret = sys_waitid(which, pid, (siginfo_t __user *)&info,
 uru ? (struct rusage __user *)&ru : NULL);
...
 ret = put_compat_rusage(&ru, uru);
...
}

int put_compat_rusage(const struct rusage *r, struct compat_rusage
__user *ru)
{
 if (!access_ok(VERIFY_WRITE, ru, sizeof(*ru)) ||
 __put_user(r­>ru_utime.tv_sec, &ru­>ru_utime.tv_sec) ||
...
}

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #77

compat_sys_waitid disasm

1) compat_sys_waitid() stores address of ru in r14

2) compat_sys_waitid() calls sys_waitid()

3) sys_waitid() calls do_wait()

4) do_wait() pushes r14 on kstack

5) do_wait() sleeps indefinitely

6) we clobber the saved r14 reg on the kstack

7) do_wait() wakes up

8) do_wait() pops r14 off the kstack

9) do_wait() returns

10) sys_waitid() returns

11) compat_sys_waitid() calls put_compat_rusage()

12) put_compat_rusage() uses clobbered source addr

13) put_user() copies from source addr to userspace

Dump of assembler code for function compat_sys_waitid:
...
 0xffffffff810aba4e <+62>: lea ­0x140(%rbp),%r14
...
 0xffffffff810aba8b <+123>: callq 0xffffffff81063b70
 <sys_waitid>
...
 0xffffffff810abaae <+158>: mov %r14,%rdi
 0xffffffff810abab1 <+161>: callq 0xffffffff810aa700
 <put_compat_rusage>
...

Dump of assembler code for function sys_waitid:
...
 0xffffffff81063bf9 <+137>: callq 0xffffffff810637e0
 <do_wait>
...

Dump of assembler code for function do_wait:
...
 0xffffffff810637e6 <+6>: push %r14
...
 PROCESS GOES TO SLEEP HERE
...
 0xffffffff810639fb <+539>: pop %r14
...

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #78

compat_sys_waitid reliability

● Is this reliable across kernel versions?
● Yes, tested on:

● Lucid default build vmlinuz-2.6.32-24-generic
● Lucid custom build vmlinuz-2.6.32.26+drm33.12
● Vanilla build vmlinuz-2.6.36.3
● Vanilla build + grsec vmlinuz-2.6.36.3-grsec

● How about compilers?
● Across most gcc 4.x? Needs more investigation
● Potentially could runtime fingerprint compiler

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #79

High-level exploit flow
1. jacker forks/execs groper

2. groper gets its own kstack addr

3. groper passes kstack addr up to
jacker

4. groper forks/execs helper

5. helper goes to sleep for
a bit

6. groper calls waitid on helper

7. jacker overwrites the required
offset on groper's stack

8. helper wakes up from sleep

9. groper returns from waitid

10. groper leaks task_struct address
back to userspace

11. groper passes leaked address
back up with jacker

12. steps 4-11 are repeated to leak
task/cred addresses

13. jacker modifies groper's cred
struct in-place

14. groper forks off a root shell

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #80

Plan of attack!

STACK
SELF-DISCOVERY

Manual analysis

Auto with libkstack

STACK
JACKING

OVERVIEW
ROOT

???

Kstack disclosure

Arbitrary write

STACK
JACKING

Read thread / task

Overwrite creds

STACK
GROPING

Rosengrope technique

Obergrope technique

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #81

Live demo!

● Exploit against
live hardened
system...

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #82

Defenses?

● Mitigate the exploitation vectors?
● Remove thread_info metadata from kstack
● RANDKSTACK?

● Eliminate all kstack disclosures?
● Clear kstack between syscalls?
● Compiler/toolchain magic?

● ???

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #83

Greetz

● #busticati

● 1kk1q85Xp$Id.gAcJOg7uelf36VQwJQ/

● ;PpPppPpPpPPPpP

Stackjacking Your Way to grsecurity/PaX Bypass – Jon Oberheide / Dan Rosenberg Slide #84

Q&A

Jon Oberheide
jon@oberheide.org

Duo Security

Dan Rosenberg
dan.j.rosenberg@gmail.com
Virtual Security Research

QUESTIONS?

mailto:jon@oberheide.org
mailto:dan.j.rosenberg@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

