
Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

1

Dan Rosenberg

A Heap of Trouble

Exploiting the Linux Kernel
SLOB Allocator

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

2

Who am I?

▪ Security consultant and vulnerability researcher at VSR
in Boston
▫ App/net pentesting, code review, etc.
▫ Published some bugs
▫ Focus on Linux kernel
▫ Bad habit of rooting Android phones
▫ Research on kernel exploitation and mitigation

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

3

Agenda

▪ What is SLOB?

▪ How does SLOB work?

▪ Evaluating exploitability

▪ SLOB exploitation techniques

▪ Demo

▪ Conclusion

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

4

Intro to SLOB

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

5

What is SLOB?

▪ Linux kernel supports three heap allocators:
▫ SLAB, SLUB, and SLOB
▫ Service dynamic allocations for kernel

▪ Implement kmalloc() and kfree() interfaces

▪ Sits on top of page frame allocator

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

6

Where is SLOB Used?

▪ Primarily embedded systems (low memory footprint)
▫ Embedded Gentoo
▫ OpenEmbedded
▫ OpenWrt
▫ Commercial embedded devices

▪ Mobile?
▫ Not yet, maybe soon

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

7

Why is SLOB Interesting?

▪ Different allocation behavior and metadata from
SLAB/SLUB

▪ No existing work on SLOB

▪ Who doesn't like crushing weak heaps?

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

8

Where Can I Use These Techniques?

▪ CVE-2009-1046: off-by-two heap overflow

▪ CVE-2010-2959: integer overflow leading to heap
overflow in Controller Area Network (CAN)

▪ CVE-2010-3874: heap overflow on 64-bit platforms in
Controller Area Network (CAN)
▫ Not exploitable on any allocator but SLOB :-)

▪ CVE-2011-0699: heap overflow in btrfs

▪ CVE-2012-0038: heap overflow in XFS

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

9

How Does SLOB Work?

▪ Three singly-linked lists of partially-full pages
▫ Less than 256 bytes
▫ Less than 1024 bytes
▫ Less than 4096 bytes

▪ Multiple sizes within same page

▪ slob_page struct

▫ Metadata at base of actual SLOB page
▫ Free units
▫ Pointer to first free chunk within page
▫ Linked list of free pages

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

10

Blocks

▪ Pages are broken into blocks (chunks)

▪ Size measured in SLOB_UNITS (2 bytes)

▪ Initially, each page is one big block

▪ Fragmented as necessary

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

11

SLOB Partially-Free Page Lists

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

12

Metadata

▪ Allocated blocks have 4-byte size header

▪ Free blocks have packed header
▫ If first two bytes are positive:

● First two bytes are size
● Second two bytes are index (in SLOB_UNITs) from

base of page to next free block

▫ If first two bytes are negative:
● First two bytes are negative index to next free

block
● Total size (including header) is assumed to be two

SLOB_UNITs

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

13

Metadata Example

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

14

Allocation

▪ Choose appropriate linked list for size

▪ Walk list until page reporting enough room

▫ Not guaranteed, could be non-contiguous
▫ If no sufficiently free pages, allocate new page

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

15

Allocation

▪ Attempt allocation of size + 4 bytes (room for header)

▫ Walk free chunks checking sizes
▫ If exact fit, unlink
▫ If too big, fragment and unlink
▫ On failure, continue to next page

▪ Insert size metadata, return chunk

▪ Rotate linked list of pages

▫ Most recently used page is checked first

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

16

Freeing

▪ Freelist maintains address order

▪ Find freelist head for chunk (apply page mask to chunk
address)

▪ Walk freelist until insertion point (address order)

▪ Adjust freelist metadata
▫ Prev->next => Chunk
▫ Chunk->size => size
▫ Chunk->next => Next

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

17

Evaluating
Exploitability

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

18

Exploitability Criteria

▪ What makes a heap “exploitable”?

▪ Criteria would be useful in evaluating heaps besides
SLOB

▪ Can compare different heap implementations

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

19

Allocation behavior

“To what degree can attackers predict and control
locality of allocations and frees?”

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

20

Allocation Behavior in SLOB

▪ No randomness in allocations

▪ Once a fresh page is allocated, all allocations are
guaranteed to be consecutive within page

▪ Objects are freed predictably
▫ Inserted into list in address order

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

21

Object Co-Residency

“Do multiple types of objects exist in the same
memory region?”

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

22

Object Co-Residency in SLOB

▪ Unlike SLAB/SLUB, all objects share same cache

▪ Size is only factor in determining where to allocate

▪ Unlike SLUB, no per-cpu caches

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

23

Object Metadata

“Do free or allocated objects contain inline
metadata that can be exploited?”

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

24

Object Metadata in SLOB

▪ SLAB/SLUB have minimal inline metadata (next free
pointer), but SLOB has:

▫ Allocated chunk size field

▫ Free chunk size field

▫ Free chunk list index field

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

25

Exploitation Mitigation

“Are any hardening measures in place to deter
exploitation of heap vulnerabilities?”

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

26

Exploitation Mitigation in SLOB

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

27

Heap Comparison

SLOB SLUB Windows 8

Allocation
Behavior

Object Co-
Residency

Object
Metadata

Exploitation
Mitigation

Moderate

Easy

Difficult

Exploit Difficulty

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

28

Pre-Exploitation

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

29

Goals of Pre-Exploitation

▪ Cause heap to be in state conducive to exploitation

▪ Requires knowledge of allocation behavior

▪ Usually requires knowledge of specific allocation
primitives
▫ Can trigger allocation and/or freeing of objects of

specific sizes

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

30

Pre-Exploitation on SLOB

▪ In classic heap overflow, goal is usually adjacent blocks

▪ In SLOB, once fresh page is used, allocations will be
contiguous (for the short term)

▪ Basic approach:
▫ Find allocation primitive for appropriate list size
▫ Trigger enough allocations to cause fresh page
▫ Trigger allocations and frees to cause vulnerable

object to be placed appropriately

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

31

How Much Should I Allocate?

▪ No /proc/slabinfo on SLOB

▪ Have to make a reasonable guess
▫ Depends on system uptime and load
▫ No real penalty for allocating too much

▪ Experimentally, a few hundred allocations is plenty

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

32

Pre-Exploitation on SLOB

▪ Rotation of partially-free page list is helpful
▫ Can fill partially free pages with larger objects
▫ Subsequent smaller allocations will be in fresh page,

even though they might have fit in other partially full
pages

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

33

Exploitation

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

34

Assumptions

▪ We have some heap overflow vulnerability
▫ Can write data past the end of a heap chunk into the

next chunk

▪ Degree of control over length and contents will vary

▪ Can find appropriate allocation primitives
▫ Structures with function pointers, etc.

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

35

Arbitrary Overflow

Full control over size of overflow and contents

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

36

Object Data Overwrite

▪ Fill partial pages and cause allocation of fresh page
▫ We'll assume this from now on...

▪ Position target chunk after vulnerable chunk

▪ Trigger overflow

▪ Trigger function pointer call/write to pointer

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

37

Object Data Overflow Cleanup

▪ Unlike SLUB/SLAB, allocated chunks have 4-byte size
header
▫ Need to restore to avoid unwanted corruption

▪ If new size is less than old size, do nothing
▫ No freelist corruption, shrinking causes no harm

▪ Otherwise, cleanup after gaining control
▫ If function pointer call, base of chunk is almost

guaranteed to be in a register

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

38

Off-by-Small Overflow

Some control over contents of three to four byte
overflow

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

39

Free Pointer Overwrite Overview

▪ Modification of technique by sgrakkyu and twiz

▪ Basic approach: corrupt freelist to trigger chunk reuse
▫ If we can trigger allocation of a useful target block on

top of data we control (or vice versa) we can win

▪ Need to corrupt “next free” pointer in adjacent free
block

▪ Remember: it's a two-byte index, not a pointer

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

40

Free Pointer Overwrite #1

▪ Do the pre-exploitation dance

▪ Fill fresh page with target chunks

▪ Trigger overflow into free chunk, overwriting 3-4 bytes
(size and one or two bytes of next free pointer)

▪ Trigger allocation of controlled chunk on top of some
target block

▪ Win

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

41

overflow

Free Pointer Overwrite #1

fptrs fptrs vuln target (free) (free)slob_page

fptrs fptrs target (free) (free)slob_page overflow

fptrs fptrs (free) (free)slob_page (alloc)

overflowfptrs fptrs (free) (free)slob_page (alloc)

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

42

Free Pointer Overwrite Cleanup

▪ Freelist has been corrupted
▫ Subsequent allocations may panic the kernel

▪ Easiest option is to terminate the freelist early (thanks
Nico) so corrupted free chunks never get traversed
▫ Chunk is considered “final” when its next-free index

returns a next chunk that is page aligned
▫ Overwrite a free chunk's next pointer with NULL or

any multiple of 0x800 to terminate the list

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

43

Off-by-Smaller Overflow

Some control over contents of one to two byte
overflow

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

44

Free Pointer Overwrite #2

▪ Same as other free pointer overwrite, except:
▫ Take advantage of special case
▫ Negative value in first two bytes of free chunk is

interpreted as negative index, not size

▪ Allows exploitation of controlled off-by-two overflow
(need both bytes to overwrite with negative two-byte
value)

▪ Remember to clean up the freelist

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

45

Off-by-One Overflow

Some control over contents of one byte overflow

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

46

Chunk Growth Attack

▪ Overwrite size field on adjacent free or allocated chunk
to “grow” that chunk
▫ Shrinking does nothing useful – no freelist corruption,

so just causes wastage of memory

▪ If overflow into allocated block, cause that block to be
freed

▪ Trigger allocation of chunk with size equal to “grown”
size with data you control

▪ Second portion of this chunk will overlap with target
chunk, allowing exploitation

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

47

Chunk Growth Attack

(alloc) vuln target (free)slob_page fptrs

(alloc) target (free)slob_page fptrsoverflow

(alloc) (free)slob_page target fptrsoverflow

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

48

Off-by-One NULL Byte Overflow

Well, this sucks.

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

49

What Are Our Options?

▪ Allocated chunk size header
▫ NULL byte means we can only shrink, not useful

▪ Free chunk size header
▫ Same as above

▪ What was that special case again?

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

50

Special Case

▪ If first two bytes are negative:
▫ Size is assumed to be one SLOB_UNIT (2 bytes)
▫ First two bytes are negative index to next free block

▪ Great, overwriting LSB of free index could be a win
▫ Trigger allocation on top of existing chunk

▪ All we need to do is cause a 2-byte block to be
allocated!

▪ But...

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

51

:-(

mm/slob.c:

void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
 ...
 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 ...
 m = slob_alloc(size + align, gfp, align, node);
 ...
}

include/linux/slab.h:

#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

52

What Does This Mean?

▪ The only piece of metadata we can possibly exploit
can't exist in any chunks we can allocate :-(

▪ Is all hope lost?
▫ Hint: no.

▪ Remember how SLOB works: chunks of varying sizes
exist in the same cache

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

53

Fragmentation to the Rescue!

▪ Same old pre-exploitation phase, fill new page with
targets

▪ Trigger allocation and freeing of block four bytes larger
than size of vulnerable block

▪ Trigger allocation of vulnerable block

▪ SLOB will fragment previous block into vulnerable
block and four-byte “special” chunk

▪ Trigger overflow, continue as if free pointer overwrite

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

54

Fragmentation Attack: Phase 1

(alloc) (free)slob_page

(alloc) dummy (free)slob_page (alloc) fptrs fptrs

(alloc) (free)slob_page (alloc)

(alloc) vulnslob_page (alloc)

(free) fptrs fptrs

(free) fptrs fptrs

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

55

Fragmentation Attack: Phase 2

(alloc) vulnslob_page (alloc) (free) fptrs fptrs

(alloc)slob_page (alloc) (free) fptrs fptrsoverflow

(alloc)slob_page (alloc) (free) fptrs fptrsoverflow

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

56

Demo

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

57

Setting up a Test Environment

▪ Wrote LKM “playground”

▪ Creates device file

▪ Can trigger heap primitives via ioctl

▫ Allocate, free, overflow, function pointer call, etc.

▪ Develop techniques with theoretical primitives
▫ Replace with real examples later

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

58

Chunk Growth Attack Demo

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

59

Conclusion

▪ SLOB's design allows easy exploitation

▪ SLOB has virtually no hardening
▫ Basic freelist validation would be simple

● Next chunk is after current chunk
● Next chunk is before end of page

▪ See KERNHEAP for ideas

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

60

Future Work

▪ Harden the SLOB allocator?
▫ I'm not going to do this

▪ Automated finding of heap primitives
▫ I don't know anything about static analysis

● Need to trace code paths, enumerate all heap
activity, and determine which chunks remain
allocated persistently

▫ Jon Oberheide's kstructhunter is a start

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

61

Thanks To...

▪ twiz

▪ Tarjei Mandt

▪ Nico Waisman

Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

62

E-mail: drosenberg@vsecurity.com
Twitter: @djrbliss

Company:
http://www.vsecurity.com

Personal:
http://www.vulnfactory.org

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

