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A Heap of Trouble
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Who am I?

▪ Security consultant and vulnerability researcher at VSR 
in Boston
▫ App/net pentesting, code review, etc.
▫ Published some bugs
▫ Focus on Linux kernel
▫ Bad habit of rooting Android phones
▫ Research on kernel exploitation and mitigation
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Agenda

▪ What is SLOB?

▪ How does SLOB work?

▪ Evaluating exploitability

▪ SLOB exploitation techniques

▪ Demo

▪ Conclusion
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Intro to SLOB
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What is SLOB?

▪ Linux kernel supports three heap allocators:
▫ SLAB, SLUB, and SLOB
▫ Service dynamic allocations for kernel

▪ Implement kmalloc() and kfree() interfaces

▪ Sits on top of page frame allocator
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Where is SLOB Used?

▪ Primarily embedded systems (low memory footprint)
▫ Embedded Gentoo
▫ OpenEmbedded
▫ OpenWrt
▫ Commercial embedded devices

▪ Mobile?
▫ Not yet, maybe soon
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Why is SLOB Interesting?

▪ Different allocation behavior and metadata from 
SLAB/SLUB

▪ No existing work on SLOB

▪ Who doesn't like crushing weak heaps?
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Where Can I Use These Techniques?

▪ CVE-2009-1046: off-by-two heap overflow

▪ CVE-2010-2959: integer overflow leading to heap 
overflow in Controller Area Network (CAN)

▪ CVE-2010-3874: heap overflow on 64-bit platforms in 
Controller Area Network (CAN)
▫ Not exploitable on any allocator but SLOB :-)

▪ CVE-2011-0699: heap overflow in btrfs

▪ CVE-2012-0038: heap overflow in XFS
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How Does SLOB Work?

▪ Three singly-linked lists of partially-full pages
▫ Less than 256 bytes
▫ Less than 1024 bytes
▫ Less than 4096 bytes

▪ Multiple sizes within same page

▪ slob_page struct

▫ Metadata at base of actual SLOB page
▫ Free units
▫ Pointer to first free chunk within page
▫ Linked list of free pages
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Blocks

▪ Pages are broken into blocks (chunks)

▪ Size measured in SLOB_UNITS (2 bytes)

▪ Initially, each page is one big block

▪ Fragmented as necessary
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SLOB Partially-Free Page Lists
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Metadata

▪ Allocated blocks have 4-byte size header

▪ Free blocks have packed header
▫ If first two bytes are positive:

● First two bytes are size
● Second two bytes are index (in SLOB_UNITs) from 

base of page to next free block

▫ If first two bytes are negative:
● First two bytes are negative index to next free 

block
● Total size (including header) is assumed to be two 

SLOB_UNITs
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Metadata Example
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Allocation

▪ Choose appropriate linked list for size

▪ Walk list until page reporting enough room

▫ Not guaranteed, could be non-contiguous
▫ If no sufficiently free pages, allocate new page
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Allocation

▪ Attempt allocation of size + 4 bytes (room for header)

▫ Walk free chunks checking sizes
▫ If exact fit, unlink
▫ If too big, fragment and unlink
▫ On failure, continue to next page

▪ Insert size metadata, return chunk

▪ Rotate linked list of pages

▫ Most recently used page is checked first
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Freeing

▪ Freelist maintains address order

▪ Find freelist head for chunk (apply page mask to chunk 
address)

▪ Walk freelist until insertion point (address order)

▪ Adjust freelist metadata
▫ Prev->next => Chunk
▫ Chunk->size => size
▫ Chunk->next => Next



Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

17

Evaluating 
Exploitability
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Exploitability Criteria

▪ What makes a heap “exploitable”?

▪ Criteria would be useful in evaluating heaps besides 
SLOB

▪ Can compare different heap implementations
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Allocation behavior

“To what degree can attackers predict and control 
locality of allocations and frees?”
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Allocation Behavior in SLOB

▪ No randomness in allocations

▪ Once a fresh page is allocated, all allocations are 
guaranteed to be consecutive within page

▪ Objects are freed predictably
▫ Inserted into list in address order
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Object Co-Residency

“Do multiple types of objects exist in the same 
memory region?”
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Object Co-Residency in SLOB

▪ Unlike SLAB/SLUB, all objects share same cache

▪ Size is only factor in determining where to allocate

▪ Unlike SLUB, no per-cpu caches
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Object Metadata

“Do free or allocated objects contain inline 
metadata that can be exploited?”
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Object Metadata in SLOB

▪ SLAB/SLUB have minimal inline metadata (next free 
pointer), but SLOB has:

▫ Allocated chunk size field

▫ Free chunk size field

▫ Free chunk list index field
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Exploitation Mitigation

“Are any hardening measures in place to deter 
exploitation of heap vulnerabilities?”
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Exploitation Mitigation in SLOB
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Heap Comparison

SLOB SLUB Windows 8

Allocation 
Behavior

Object Co-
Residency

Object 
Metadata

Exploitation 
Mitigation

Moderate

Easy

Difficult

Exploit Difficulty
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Pre-Exploitation
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Goals of Pre-Exploitation

▪ Cause heap to be in state conducive to exploitation

▪ Requires knowledge of allocation behavior

▪ Usually requires knowledge of specific allocation 
primitives
▫ Can trigger allocation and/or freeing of objects of 

specific sizes
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Pre-Exploitation on SLOB

▪ In classic heap overflow, goal is usually adjacent blocks

▪ In SLOB, once fresh page is used, allocations will be 
contiguous (for the short term)

▪ Basic approach:
▫ Find allocation primitive for appropriate list size
▫ Trigger enough allocations to cause fresh page
▫ Trigger allocations and frees to cause vulnerable 

object to be placed appropriately
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How Much Should I Allocate?

▪ No /proc/slabinfo on SLOB

▪ Have to make a reasonable guess
▫ Depends on system uptime and load
▫ No real penalty for allocating too much

▪ Experimentally, a few hundred allocations is plenty
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Pre-Exploitation on SLOB

▪ Rotation of partially-free page list is helpful
▫ Can fill partially free pages with larger objects
▫ Subsequent smaller allocations will be in fresh page, 

even though they might have fit in other partially full 
pages
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Exploitation
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Assumptions

▪ We have some heap overflow vulnerability
▫ Can write data past the end of a heap chunk into the 

next chunk

▪ Degree of control over length and contents will vary

▪ Can find appropriate allocation primitives
▫ Structures with function pointers, etc.
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Arbitrary Overflow

Full control over size of overflow and contents
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Object Data Overwrite

▪ Fill partial pages and cause allocation of fresh page
▫ We'll assume this from now on...

▪ Position target chunk after vulnerable chunk

▪ Trigger overflow

▪ Trigger function pointer call/write to pointer
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Object Data Overflow Cleanup

▪ Unlike SLUB/SLAB, allocated chunks have 4-byte size 
header
▫ Need to restore to avoid unwanted corruption

▪ If new size is less than old size, do nothing
▫ No freelist corruption, shrinking causes no harm

▪ Otherwise, cleanup after gaining control
▫ If function pointer call, base of chunk is almost 

guaranteed to be in a register
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Off-by-Small Overflow

Some control over contents of three to four byte 
overflow
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Free Pointer Overwrite Overview

▪ Modification of technique by sgrakkyu and twiz

▪ Basic approach: corrupt freelist to trigger chunk reuse
▫ If we can trigger allocation of a useful target block on 

top of data we control (or vice versa) we can win

▪ Need to corrupt “next free” pointer in adjacent free 
block

▪ Remember: it's a two-byte index, not a pointer
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Free Pointer Overwrite #1

▪ Do the pre-exploitation dance

▪ Fill fresh page with target chunks

▪ Trigger overflow into free chunk, overwriting 3-4 bytes 
(size and one or two bytes of next free pointer)

▪ Trigger allocation of controlled chunk on top of some 
target block

▪ Win
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overflow

Free Pointer Overwrite #1

fptrs fptrs vuln target (free) (free)slob_page

fptrs fptrs target (free) (free)slob_page overflow

fptrs fptrs (free) (free)slob_page (alloc)

overflowfptrs fptrs (free) (free)slob_page (alloc)
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Free Pointer Overwrite Cleanup

▪ Freelist has been corrupted
▫ Subsequent allocations may panic the kernel

▪ Easiest option is to terminate the freelist early (thanks 
Nico) so corrupted free chunks never get traversed
▫ Chunk is considered “final” when its next-free index 

returns a next chunk that is page aligned
▫ Overwrite a free chunk's next pointer with NULL or 

any multiple of 0x800 to terminate the list
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Off-by-Smaller Overflow

Some control over contents of one to two byte 
overflow
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Free Pointer Overwrite #2

▪ Same as other free pointer overwrite, except:
▫ Take advantage of special case
▫ Negative value in first two bytes of free chunk is 

interpreted as negative index, not size

▪ Allows exploitation of controlled off-by-two overflow 
(need both bytes to overwrite with negative two-byte 
value)

▪ Remember to clean up the freelist
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Off-by-One Overflow

Some control over contents of one byte overflow
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Chunk Growth Attack

▪ Overwrite size field on adjacent free or allocated chunk 
to “grow” that chunk
▫ Shrinking does nothing useful – no freelist corruption, 

so just causes wastage of memory

▪ If overflow into allocated block, cause that block to be 
freed

▪ Trigger allocation of chunk with size equal to “grown” 
size with data you control

▪ Second portion of this chunk will overlap with target 
chunk, allowing exploitation
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Chunk Growth Attack

(alloc) vuln target (free)slob_page fptrs

(alloc) target (free)slob_page fptrsoverflow

(alloc) (free)slob_page target         fptrsoverflow
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Off-by-One NULL Byte Overflow

Well, this sucks.
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What Are Our Options?

▪ Allocated chunk size header
▫ NULL byte means we can only shrink, not useful

▪ Free chunk size header
▫ Same as above

▪ What was that special case again?
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Special Case

▪ If first two bytes are negative:
▫ Size is assumed to be one SLOB_UNIT (2 bytes)
▫ First two bytes are negative index to next free block

▪ Great, overwriting LSB of free index could be a win
▫ Trigger allocation on top of existing chunk

▪ All we need to do is cause a 2-byte block to be 
allocated!

▪ But...
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:-(

mm/slob.c:

void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
    ...
    int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
    ...
    m = slob_alloc(size + align, gfp, align, node);
    ...
}

include/linux/slab.h:

#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
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What Does This Mean?

▪ The only piece of metadata we can possibly exploit 
can't exist in any chunks we can allocate :-(

▪ Is all hope lost?
▫ Hint: no.

▪ Remember how SLOB works: chunks of varying sizes 
exist in the same cache



Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

53

Fragmentation to the Rescue!

▪ Same old pre-exploitation phase, fill new page with 
targets

▪ Trigger allocation and freeing of block four bytes larger 
than size of vulnerable block

▪ Trigger allocation of vulnerable block

▪ SLOB will fragment previous block into vulnerable 
block and four-byte “special” chunk

▪ Trigger overflow, continue as if free pointer overwrite
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Fragmentation Attack: Phase 1

(alloc) (free)slob_page

(alloc) dummy (free)slob_page (alloc) fptrs fptrs

(alloc) (free)slob_page (alloc)

(alloc) vulnslob_page (alloc)

(free) fptrs fptrs

(free) fptrs fptrs
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Fragmentation Attack: Phase 2

(alloc) vulnslob_page (alloc) (free) fptrs fptrs

(alloc)slob_page (alloc) (free) fptrs fptrsoverflow

(alloc)slob_page (alloc) (free) fptrs fptrsoverflow
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Demo
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Setting up a Test Environment

▪ Wrote LKM “playground”

▪ Creates device file

▪ Can trigger heap primitives via ioctl

▫ Allocate, free, overflow, function pointer call, etc.

▪ Develop techniques with theoretical primitives
▫ Replace with real examples later
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Chunk Growth Attack Demo
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Conclusion

▪ SLOB's design allows easy exploitation

▪ SLOB has virtually no hardening
▫ Basic freelist validation would be simple

● Next chunk is after current chunk
● Next chunk is before end of page

▪ See KERNHEAP for ideas
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Future Work

▪ Harden the SLOB allocator?
▫ I'm not going to do this

▪ Automated finding of heap primitives
▫ I don't know anything about static analysis

● Need to trace code paths, enumerate all heap 
activity, and determine which chunks remain 
allocated persistently

▫ Jon Oberheide's kstructhunter is a start
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Thanks To...

▪ twiz

▪ Tarjei Mandt

▪ Nico Waisman



Copyright © 2011 Virtual Security Research, LLC.
All Rights Reserved.

62

E-mail: drosenberg@vsecurity.com
Twitter: @djrbliss

Company:
http://www.vsecurity.com

Personal:
http://www.vulnfactory.org

Questions?
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